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Abstract—Stroke rehabilitation is fraught with challenges, 

particularly regarding patient mobility, imprecise assessment 

scoring during the therapy session, and the security of healthcare 

data shared online. This work aims to address these issues by 

calibrating hand gesture recognition systems using the 

Rehabilitation Internet-of-Things (RIOT) framework and 

examining the effectiveness of machine learning algorithms in 

conjunction with the MediaPipe framework for gesture 

recognition calibration. RIOT represents an IoT system developed 

for the purpose of facilitating remote rehabilitation, with a 

particular focus on individuals recovering from strokes and 

residing in geographically distant regions, in addition to 

healthcare professionals specialising in physical therapy. The 

Design of Experiment (DoE) methodology allows physiotherapists 

and researchers to systematically explore the relationship between 

RIOT and accurate hand gesture recognition using Python's 

MediaPipe library, by addressing possible factors that may affect 

the reliability of patients’ scoring results while emphasising data 

security consideration. To ensure precise rehabilitation 

assessments, this initiative seeks to enhance accessible home-based 

stroke rehabilitation by producing optimal and secure calibrated 

hand gesture recognition with practical recognition techniques. 

These solutions will be able to benefit both physiotherapists and 

patients, especially stroke patients who require themselves to be 

monitored remotely while prioritising security measures within 

the smart healthcare context. 

Keywords—Internet-of-Things (IoT); RIOT; stroke 
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I. INTRODUCTION 

In enhancing care quality, patients wellbeing, and 
healthcare efficiency, smart healthcare systems can be 
promising by the integration of IoT, Artificial Intelligence (AI), 
big data analytics, and wearable devices, with the collaboration 
and involvement of patients, healthcare providers, technology 
developers, and policymakers [1]. These real-time data 
collection, remote monitoring and personalised healthcare 
solutions manifested an acceleration of technological 
advancements from healthcare industry demands, especially 
during COVID-19 pandemic since it was driven to be 
implemented globally [2]. Across the globe, the goals of smart 
healthcare systems will always be the improvement of patient 

care, cost effective, and efficient deliverables through accurate 
diagnoses, timely treatments, and continuous monitoring [3]. 

“Immobility” terminology is always close to “movements”. 
So do the struggles of the stroke patients who need to face the 
challenges who are not commuting freely? A stroke, as defined 
by the World Health Organization, is a sudden onset of focal or 
global neurological impairment presumed to be of vascular 
origin [4]. Stroke is a severe neurological disease with complex 
underlying pathological processes, leading to high rates of 
morbidity and mortality [5]. 

As a starting point, this study will investigate the hand 
gesture of the orientation of the palm, either having a landed 
wrist or upper limb, depending on the patient's ability during 
the rehabilitation session. Since stroke rehabilitation poses 
challenges such as imprecise progress tracking and assessment, 
along with concerns about sensitive data, highlighting the need 
for reliable and secure data handling, a framework was 
introduced to assist the healthcare community in improvising 
the rehabilitation sessions with the presence of the emerging 
modern technologies that is remotely accessible through the 
network. Therefore, a framework called RIOT is proposed to 
deliver affordable and efficient remote stroke rehabilitation. 

Remote rehabilitation strategies, as highlighted by Tuli et 
al. [6] suggest favourable solutions and introduce privacy 
vulnerabilities and software reliability issues  [7]. In response 
to these challenges, a RIOT framework was developed to 
enhance gesture recognition accuracy and ensure data security 
within smart healthcare systems to stand with the exploration 
of the calibration of hand gesture recognition using the RIOT 
framework and evaluating its effectiveness in improving home-
based stroke rehabilitation [8], [9]. 

Blending IoT, Machine Learning [10], security and 
calibration can improve the recovery process for stroke 
survivors as a blueprint that a system development requires an 
advanced rehabilitation requires multidisciplinary 
collaboration [11]. Based on the issue, there was a need for a 
secure calibration approach for hand gesture recognition using 
a DoE methodology on a RIOT platform, which can inspect an 
accurate hand gesture recognition and precise rehabilitation 
assessment with well-calibrated parameters while considering 
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potential security implications within a smart healthcare 
context. In addition, the implementation of MediaPipe by 
Python is necessary to capture the elements of hand gesture 
recognition that can execute the performance of the recognition 
[12]. 

Calibration is essential for accurate hand gesture 
recognition outcomes, as clinical models, algorithms, and 
scores must provide reliable and consistent readings [13]. 
Consequently, the incorporation of DoE can fine-tune and 
adjust the accuracy of the rehabilitation assessment with its 
analytical basis [14]. 

Hence, smart healthcare compromises better future with the 
developments of services, including the sensitivity towards  the 
importance of data protection, affordability of the healthcare 
treatment, and widely nurturing the field of computer science 
[15]. The integration of various technologies has been explored 
in recent studies to enhance security and efficiency in different 
sectors [16]. Additionally, the security and privacy aspects of 
IoT in smart city applications have been comprehensively 
analysed, underlining the potential and challenges of such 
technologies [17]. Moreover, calibration process is one of the 
applications that can enable improvisation of the precision of 
the experiment as it is essentially supports the initial process of 
developing remote rehabilitation. 

This paper is arranged as follows: Section I gives a brief 
introduction to the implementation of the calibration for gesture 
recognition using MediaPipe in the smart healthcare context. 
Section II focuses on the existing literature on the integration of 
IoT in stroke rehabilitation, the effectiveness of machine 
learning algorithms for gesture recognition, and the encounters 
related to data security and reliability in smart healthcare 
systems. Section III describes the proposed solution for this 
paper. Section IV showcased the results and discussion of the 
experiment. Finally, Section V concludes the content of this 
research. 

II. LITERATURE REVIEW 

This literature review segment provides an overview of 
existing knowledge, identifies research gaps, and highlights 
areas for future investigation, setting the foundation for this 
study. Key areas of focus include the integration of IoT in 
stroke rehabilitation, and the challenges related to data security 
and reliability in smart healthcare systems. The effectiveness of 
machine learning algorithms for gesture recognition. 

A. Smart Healthcare for Stroke Rehabilitation Internet-of-

Things 

Smart healthcare systems for stroke rehabilitation empower 
Internet-of-Things (IoT) technologies to offer remote 
monitoring capabilities for patients undergoing rehabilitation 
[18]. These systems utilise advanced technologies such as cloud 
computing, machine learning, and wearable sensors to enable 
remote rehabilitation training for stroke survivors, reducing 
costs and burdens on both patients and healthcare providers 
[19]. By integrating big data, artificial intelligence, cloud 
computing, and IoT, smart healthcare enhances medical 
services' automation, informatisation, and intelligence, leading 
to improved healthcare efficiency and patient experience [3]. 

B. Limitations of Current Stroke Rehabilitation Systems and 

Home-Based Solutions 

Incapabilities in tracking and monitoring the progress of 
stroke patients over time can hinder the effectiveness of 
traditional rehabilitation methods. Additionally, data security 
concerns arise caused of the sensitive nature of patient 
information which obviously displaying the need for innovative 
solutions for the quality and security of stroke rehabilitation 
programs [20]. 

Home-based solutions are a promising way to overcome 
traditional stroke rehabilitation limitations. Tele rehabilitation 
uses e-health platforms and digital technologies to provide 
convenient and cost-effective services to stroke patients at 
home. Research has shown that home-based programs enhance 
patient outcomes and improve access to care, particularly when 
in-person rehabilitation is not possible [21]. Technological 
advancements such as webcam monitoring and mobile apps 
provide cost-effective options for home-based stroke 
rehabilitation with remote monitoring and real-time feedback, 
increasing patient engagement. Inexpensive technologies can 
enhance outcomes for stroke survivors by optimizing home-
based rehabilitation and overcoming current system limitations 
[22]. 

C. Challenges in Data Security and Reliability 

Safeguarding data security in smart healthcare is critical, 
with the exchange of sensitive healthcare data among IoT-
enabled medical devices necessitating secure data aggregation 
and transmission protocols [5]. Additionally, the 
implementation of secure IoT frameworks is essential to protect 
patient data and ensure the integrity of healthcare systems [6]. 

To address security concerns in IoT-based healthcare 
systems, various frameworks and solutions have been proposed 
to safeguard patient data and privacy [7]. Security and privacy 
challenges in IoT healthcare systems are being studied to 
enhance robust security measures [8]. Furthermore, blockchain 
in healthcare improves security and privacy in tele-medical 
services by integrating technology for patient data transmission 
[9]. 

Security is important for IoT devices in smart healthcare to 
prevent breaches and the limitations in processing and battery 
life make it critical [10]. Studies found weaknesses in IoT 
healthcare apps and stressed blockchain's importance in 
reducing security threats, offering ways to boost security in 
healthcare systems [11]. Also, the development of secure and 
scalable healthcare data transmission frameworks based on 
optimised routing protocols is essential for ensuring data 
integrity and confidentiality in IoT applications [12]. 

D. Effectiveness of Machine Learning (ML) and Deep 

Learning (DL) Techniques for Hand Gesture Recognition 

ML uses algorithms to learn from data for decisions or 
predictions while DL is a subset of machine learning, 
employing neural networks with multiple layers for automatic 
intricate data representations that is inspired by biological 
neural structures, excels in extracting complex patterns and 
features from data, outperforming traditional machine learning 
methods in different tasks [23]. 
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Based on the related previous work, artificial intelligence 
and machine learning have been increasingly utilised in the 
healthcare sector to improve diagnostics and patient care, as 
reviewed by Rozario et al. [24] as well as the challenges of 
implementing IoT in educational domains have been discussed, 
providing insights into the potential applications and obstacles. 
The recent trends in AI and IoT have also been studied, 

suggesting future research prospects for enhancing networking 
systems [15]. 

TABLE I. Table I and Table II indicate the comparative 
analysis of various techniques used in gesture recognition. 
Specifically, Table I compares general techniques in gesture 
recognition, while Table II focuses on comparing techniques 
that utilises MediaPipe framework. 

TABLE I.  THE COMPARISON OF TECHNIQUES IN GESTURE RECOGNITION 

Author 

/Year 

Methods 

/Algorithms 
Research Area Feature Sets Results Type 

Guo et al. 

(2023) [25] 

Support Vector Machine (SVM), k-Nearest 

Neighbours (k-NN), Linear Discriminant 
Analysis (LDA), Neural Network 

(Electromyography), InceptionTime, 1D-

CNN 

Hand Rehab 

Equipment, sEMG-

based Gesture 
Recognition 

Mean Absolute Value 
(MAV), Root Mean 

Square (RMS), Variance 

of Average Values (VAV), 
Integrated EMG (iEMG), 

SSI, WL 

90.89% Overall Gesture 

Recognition Accuracy 

ML 

DL 

Padilla-
Magana & 

Pena Pitarch 

(2022) [26] 

Support Vector Machine (SVM), Random 
Forest (RF), k-Nearest Neighbours (k-NN) 

(Classification), Borderline-SMOTE 

(Balancing) 

Post-Stroke ARAT 

Activities 

Classification 

Finger Joint 

Extension/Flexion Angles 

98% Precision (SVM 

Classifier) 
ML 

Ho et al. 

(2023) [27]  

Support Vector Machine (SVM), Multilayer 
Perceptron (MLP), Random Forest, Logistic 

Regression, k-Nearest Neighbors (k-NN) 

(Leap Motion) 

Gamified Rehab, 

Key Pose 
Identification 

Skeleton Extraction, Hand 

Pose, Gesture Recognition 

96.84% (SVM) & 96.47% 

(MLP) Accuracy 
ML 

Zaher et al. 

(2024) [28] 

Bidirectional Long Short-Term Memory 

(Bi-LSTM), Long Short-Term Memory 

(LSTM), Convolutional Neural Network 
(CNN), CNN-LSTM 

Action Recognition 

(Deep Learning) 

UI-PRMD & KIMORE 

Datasets (Pain/Posture) 

93.08% Accuracy 
(KIMORE), 99.70% (UI-

PRMD) 

DL 

Akmal et al. 

(2021) [29] 

Electromyography (EMG) Signal, Support 

Vector Machine (SVM) (Classification) 

Prosthetic Finger 
Movement 

Classification 

Finger Movement 

Classification, True 

Positive Rate (TPR) 
Analysis 

High Accuracy & 

Efficiency (SVM) 
ML 

Antonius & 

Tjahyadi 
(2021) [30] 

Convolutional Neural Network - Recurrent 

Neural Network (CNN-RNN) 
(Electromyography) 

Drone Control with 

Hand Gestures 

Muscle Tension State 

Signals [74] 

Successful Gesture 

Identification for Drone 
Control 

DL 

Copaci et al. 

(2022) [31] 

Bayesian Neural Network, Artificial Neural 

Network (ANN), Local Response 

Normalization (LRN) 

Surface 

Electromyography 

(sEMG) Gesture 

Recognition for 

Rehab Glove 

Improvement on Patient 

Motivation 

98.7% Gesture 

Recognition Accuracy 
MLDL 

Das et al. 

(2023) [32]  

Support Vector Machine (SVM), Random 
Forest, Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN) 

Real-time Hand 
Gesture Recognition 

(Vision-based) 

Hand Detection, Tracking, 

Gesture Features 
97.3% Accuracy (CNN) MLDL 

Tsokov et al. 

(2021) [33] 

1D Convolutional Neural Network (1D 
CNN) Optimization (Evolutionary 

Algorithm) 

Human Activity 

Recognition 

Evolutionary CNN 

Architecture Optimization 

Accurate Human Activity 

Recognition 
DL 

Jiang et al. 

(2022) [34] 

Support Vector Machine (SVM), k-Nearest 

Neighbours (k-NN), Naïve Bayes, 
Discriminant Analysis 

Spatio-temporal 

Hand Gesture 
Recognition 

- 

Achieved an average 

accuracy of 85% in hand 
gesture recognition 

ML 

Palanisamy & 
Thangaswamy 

(2023) [35]  

Hough Transforms, Artificial Neural 

Networks (ANN) 

Hand Gesture 

Recognition 
Spatiotemporal Features 

Detected hand gestures 

with an accuracy of 92% 
using spatiotemporal 

techniques and artificial 

neural networks 

ML 

Wei et al. 

(2021) [36] 
CNNs 

Surface 

Electromyography-

Based Gesture 
Recognition 

- 

Achieved a classification 

accuracy of over 90% for a 

large set of gestures using 
CNNs. 

DL 

Lee & Bae 

(2020) [37] 
Dual-channel ANN, DNN 

Hand Gesture 

Intention Cognition 
IMU sensor data 

Explored deep learning 

techniques achieving an 

accuracy of 88% for hand 
gesture intention 

recognition. 

DL 
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1) MediaPipe framework: The comparison of deep 

learning techniques in gesture recognition using the MediaPipe 

framework reveals significant advancements in sign language 

recognition for individuals. Various researches have 

demonstrated the effectiveness of combining modern computer 

vision and machine learning approaches, such as CNN [38], 

LSTM [39], and lightweight deep neural networks as GRU and 

1D CNN [40], in accurately recognising sign language gestures. 

These techniques have shown high classification accuracies 

ranging from 98.8% to 99.95% on different datasets, including 

ASL alphabets, daily used signs, and static sign language letters 

and characters. By leveraging the MediaPipe framework for 

feature extraction and real-time processing, these models 

contribute significantly to bridging the communication gap 

between the physically impaired community and the general 

population, enhancing their quality of life with proper 

recognition. 

Overall, there are two main hand gesture recognition 
approaches: vision-based (using cameras for features) with high 
accuracy, and sensor-based (using EMG or IMU) with 
moderate accuracy. ML/DL techniques (CNNs) achieve high 
accuracy in various applications, while MediaPipe Framework 

offers real-time recognition with comparable accuracy. In 
stroke rehabilitation, both ML/DL and MediaPipe are efficient 
with high accuracy. MediaPipe suits smart healthcare for 
immediate feedback, while traditional models are better for 
offline processing. Combining both can make sure accurate 
recognition in rehabilitation. Since gesture recognition field is 
rapidly evolving, best approach depending on specific 
requirements. 

E. Technology Integration for Secure Calibration 

In this section mentions calibration process involving the 
system accuracy recognises the equations application to the 
calibration analysis. Also, the gestures across different devices, 
environments, technical approaches, and user conditions with 
MediaPipe’s hand tracking module due to its robust and real-
time capabilities were meant to be achieved. 

1) Formulas and equations: To precisely assess and 

calibrate the hand gesture recognition system, six key equations 

and references are employed for the analysis: 

a) The Accuracy of Gesture Recognition and Euclidean 

Distance Formula 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑠𝑒𝑑 𝐺𝑒𝑠𝑡𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝐺𝑒𝑠𝑡𝑢𝑟𝑒𝑠
 × 100%

 (1) 

TABLE II.  THE COMPARISON OF DEEP LEARNING TECHNIQUES IN GESTURE RECOGNITION USING MEDIAPIPE FRAMEWORK 

Author 

/Year 

Methods 

/Algorithms 
Research Area Feature Sets Results 

Lu & Peng (2023) 

[41] 

Deep neural network 

architecture  
Intelligent security system Landmark prediction 

Efficient and reliable gesture 

detection. 

Giri & Patil (2023) 
[42] 

GRU, LSTM neural network 
model 

Sign language recognition 
Hand segmentation, 
feature representation 

99% accuracy achieved. 

Sahoo et al. (2022) 

[43] 
Fine-tuned CNN Hand gesture recognition - Real-time gesture recognition. 

Abdallah et al. 

(2022] [40] 

Hybrid architecture involving 
MediaPipe for hand detection 

and tracking 

Real-time gesture recognition Hand and pose landmarks 
Lightweight system for accurate 

recognition. Validation loss: 0.115 

Ong et al. (2022) 
[44] 

LSTM Autonomous Vehicles (AV) 
Pose extraction 
algorithm: MediaPipe 

Achieved reliable results with traffic 
gestures in indoor environment. 

Wang et al. (2020) 

[45] 

Gaussian Mixture Model, 

Hidden Markov Model 
Gesture recognition 

Data gloves, position 

sensors 

Recognition of over 93% of 280 

gesture models 

Ru et al. (2023) 
[46] 

PCA, HMM, Particle Filtering, 
Condensation Algorithm 

User guide application 
Stochastic process, 
statistical modelling 

Dynamic gesture recognition using 
statistical approaches. 

Indriani et al. [47] 

Transfer learning on 

DenseNet201 for gesture 
classification model. 

Neural network architectures 

for training and classifying 
hand gestures 

DenseNet201 for hand 

gesture classification 
using transfer learning" 

Validation accuracy: 97.55%" 

Wang et al. (2023) 

[48] 

LTSM, Gated Recurrent Unit 

(GRU) neural networks 
Sign language recognition 

Visual sign language 

recognition. 

- sign language dataset 
64 Argentine sign 

languages (LSA64) 

Capture of 3D coordinates of hands 
for sign language recognition, 

LTSM: 94.0625% and GRU: 

94.5312% 

Padhi & Das 

(2022) [49] 

Transfer learning on 
DenseNet201 for gesture 

classification model." 

Neural network architectures 
for training and classifying 

hand gestures 

DenseNet201 for hand 
gesture classification 

model 

Validation accuracy: 97.55%" 

Kumar et al. 

(2023) [39] 

BlazePalm, Landmark model, 

Gesture recognition model 
Virtual scene 

Hand key point model for 

3D hand joint coordinates  

Effective hand key point localization 

and 3D hand joint prediction 

Giri & Patil (2024) 

[42] 
GRU, LSTM Sign language recognition 

Hand segmentation, 

feature representation 
99% accuracy achieved 

Suherman et al. 

(2023) [50] 
CNNs, transformer Gesture recognition 

Image feature 

representation 

Achieved over 95% accuracy in 2D 

or 3D gesture recognition tasks 

Liu et al. (2022) 
[51] 

Few-Shot Learning,  

 

Continuous gesture sequences 
recognition 

RWTH German 
fingerspelling dataset 

Accuracy for 5-way 1-shot gesture 

recognition 89.73%, which randomly 

selected. 
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The distance between the camera and the hand is crucial for 
calibration. The distance was measured in centimetres (cm) 
using a metal ruler. Wang et al. [52] explored stress formulas 
from deformation equations to acquire spatial distances using 
mathematics. The Euclidean distance formula calculates 3D 
space distance when hand landmark coordinates are known 

𝑑 = (𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (2) 

Where  (𝑥1, 𝑦1, 𝑧1)  and (𝑥2, 𝑦2 , 𝑧2)  are the coordinates of 
two points which are landmark 4 and 8. 

b) Corner angle of the laptop: The corner angle of the 

laptop, measured using a 3D printed protractor (Xiphias), 

affects the range of capture for the webcam. This angle is 

decisive for recognising landed wrist gestures. The angle 𝜃. θ 

can be measured and used to adjust the camera’s field of view: 

c) Mean (Average) and standard deviation calculation: 

The accuracy of different formulas demonstrated the 

importance of mean accuracy and standard deviation 

calculations in assessing formula performance [53]. 

𝜃 = arctan(
ℎ𝑒𝑖𝑔ℎ𝑡

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)   (3) 

Measurement and accuracy assessment of angles aligns 
with the methodology of measuring and adjusting corner angles 
for webcam calibration [54]. 

𝑀𝑒𝑎𝑛 =
∑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑉𝑎𝑙𝑢𝑒𝑠

𝑛
   (4) 

where 𝑛 is the number of accuracy measurements. 

Standard Deviation = √
∑(χi−𝜇)2

𝑛
  (5) 

where χI is each accuracy value, μ is the mean accuracy, and 
𝑛 is the number of measurements. 

d) ANOVA (Analysis of variance): To know the main 

features of similarity indices, which aligns with the statistical 

analysis required for accuracy assessment in gesture 

recognition [55] and ANOVA was used to determine if there 

are any statistically significant differences [56] between the 

means of independent (unrelated) groups. 

𝐹 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝𝑠

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠
  (6) 

2) Calibration procedure: Some factors such as camera 

type, whether using a laptop camera or an external camera with 

different resolutions, can impact the quality of gesture 

recognition [57]. Additionally, the distance between the camera 

and the hand, as well as the orientation of the palm, are essential 

factors that influence the ability of stroke patients to perform 

gestures accurately [58]. 

Moreover, repetitions and accuracy of gestures are 
fundamental for calibration in rehabilitation systems [59]. Also, 
lighting conditions need to be controlled to evaluate camera 
sensitivity and gesture recognition [60]. 

Thus, secure calibration methods with camera type, 
distance, palm orientation, accuracy, repetitions, and lighting 

are vital for optimising stroke rehabilitation systems. Advanced 
technologies can improve rehabilitation programs for stroke 
patients. 

In summary, while significant progress has been made in 
integrating IoT and machine learning into stroke rehabilitation, 
challenges related to data security, system reliability, and the 
effectiveness of home-based solutions remain. Previous studies 
have demonstrated the effectiveness of machine learning for 
gesture recognition but have not addressed security concerns. 
Therefore, this research aims to address these gaps by 
calibrating hand gesture recognition using the RIOT framework 
and evaluating machine learning algorithms with MediaPipe, 
with a focus on enhancing data security and rehabilitation 
accuracy. 

III. METHODOLOGY 

The methodology outlines the process of integrating and 
calibrating MediaPipe for hand gesture recognition in stroke 
rehabilitation, addressing the limitations identified in the 
literature review. Fig. 1 and Fig. 2 visualise the flow of the data 
collection, and palm orientation testing as a part of data 
collection process. 

A. Tool Selection 

1) Python, MediaPipe framework and MediaPipe 

solutions: The convergence of MediaPipe with Python libraries 

is pivotal in pose detection and analysis for the creation of 

machine learning pipelines. MediaPipe framework offers hand 

tracking and gesture recognition solutions and provides a palm 

detector and hand landmark model for accurate gesture 

recognition [61], [62]. Using MediaPipe with Python allows 

access to hand landmark models and gesture recognition 

capabilities [63]. 

MediaPipe's BlazePose algorithm has been effective in 
single-camera human 3D-kinematics. BlazePose in 
physiotherapy exercise classification showed efficient 
performance with a frame rate of 32 frames per second [64], 
[62]. 

Additionally, MediaPipe's adaptability and dependability 
are evident in its performance across different areas of pose 
detection tasks. It has shown effectiveness in the identification 
of genetic syndromes and in reducing the likelihood of 
overfitting in contrast to other techniques [63], [65]. The 
framework's robustness and versatility make it a valuable tool 
for various applications, including sign language-based video 
calling apps and object detection for aspiring film directors 
[63], [66]. 

2) Gesture recognition procedure: Subsequently, Fig. 2 

will explain further the process of palm gesture recognition 

during Palm Orientation Testing. To detect the palm, 

MediaPipe acquires landmarks, as shown in Fig. 3 to produce 

the coordinates of the gestures. The landmarks were generated 

in Fig. 3 and Fig. 4. A by MediaPipe and the purple label was 

the MediaPipe, between landmark 4 and 8 for the measurement 

of accuracies. Fig. 3. B is the initial visualisation of the 21 

landmarks by MediaPipe. 
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Fig. 1. Calibrating process flow for data collection. 

 

Fig. 2. The palm orientation testing of hand gesture recognition flowchart 

using MediaPipe during calibration data collection. 

  

Fig. 3. The key point localisation of 21 hand-knuckle coordinates within the 

detected hand regions by MediaPipe with red points. 

0. MIDDLE_FINGER_DIP 

1. MIDDLE_FINGER_TIP 

2. RING_FINGER_MCP 

3. RING_FINGER_PIP 

4. RING_FINGER_DIP 

5. RING_FINGER_TIP 

6. PINKY_MCP 

7. PINKY_PIP 

8. PINKY_DIP 

9. PINKY_TIP 

10. WRIST 

11. THUMB_CMC 

12. THUMB_MCP 

13. THUMB_IP 

14. THUMB_TIP 

15. INDEX_FINGER_MCP 

16. INDEX_FINGER_PIP 

17. INDEX_FINGER_DIP 

18. INDEX_FINGER_TIP 

19. MIDDLE_FINGER_MCP 

20. MIDDLE_FINGER_PIP 

Fig. 4. Hand Landmarks list by MediaPipe with numerical labelling. 

3) Evaluation of MediaPipe for hand gesture recognition: 

Using an open-source framework, for hand gesture recognition 

[73]. MediaPipe offers a suite of pre-trained models and 

pipelines specifically designed for real-time hand tracking and 

gesture recognition. The evaluation of MediaPipe's 

performance in this context focuses on its built-in accuracy 

metrics. 

a) Accuracy measurement: The built-in accuracy 

evaluation includes the confidence score indicating the 

probability that the detected hand landmarks correspond to a 

hand gesture and the percentage of gestures correctly classified 

by MediaPipe's pre-trained models. The measurement of the 

distance was set in between the perpendicular point of camera 

to the base, and palm location at 0.00 cm, as displayed in Fig. 

5. According to Fig. 6, the attached ruler was placed right by 

the side of the laptop screen to record the angle between the 

web camera and the base or keyboard of the laptop. The angles 

were measured by placing Xiphias at the side of the laptops, 

respectively, as shown as in Fig. 6. A. Meanwhile Fig. 6. B is 

how the angles was examined on the devices. 

 

Fig. 5. Experimental setup showing the distance measurement between the 

laptop webcam and the hand using a metal ruler and a 3D printed protractor 
(Xiphias) to determine the corner angle of the laptop. 

 

Setup the environment

• choose well-lit rooms to 
stimulate different 
lighting.

• place the camera and 
adjust palm disctance 
and angles (for corner 
angles factor).

Camera Calibration

• Built-in laptop cameras.
• An external camera

Palm Orientation Testing

• Record the system’s ability 
to recognise gestures 
accurately in each 
orientation.

Gesture Repetition

• subject were performed 
thrice (n=3).

Result Analysis

• Record accuracies to 
standardise setup for 
regular use.
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Fig. 6. The coordination of Xiphias to get the angles and then the distances 

started to be examined was perpendicular to the laptop webcam. 

B. Calibration with DoE 

1) Calibration process: The calibration process involved 

optimising factors to enhance the accuracy of hand gesture 

recognition within the stroke rehabilitation context. This step 

focused on fine-tuning parameters such as camera type, camera 

distance, palm orientation, and lighting conditions to ensure 

precise and reliable gesture recognition outcomes [67], [68], 

[69]. 

a) Calibration setup: Strategically placing the external 

camera at a specific distance from the hand minimises 

occlusions and distortions that may arise with a laptop camera, 

resulting in more reliable gesture detection. Gesture recognition 

has gained traction due to advancements in computer vision and 

AI. Hand-gesture recognition for Human-Machine Interaction 

(HMI), enabled effective interpretation of user intent by 

machines [70]. Besides, calibration process is aligned with 

research focused on enhancing gesture recognition systems 

through cutting-edge technologies and methodologies [71]. 

Likewise, scholars have recorded developments in real-time 

hand gesture recognition through the use of deep learning 

models from MediaPipe and sensor fusion strategies [72]. For 

reliable results, calibrating a gesture recognition system is 

important. It benefits in developing systems for various 

purposes, which supports this approach. 

C. Data Collection and Result Analysis 

Data gathering under various conditions was recorded to 
ensure robustness and accuracy. The comparison was made 
based on factors as mentioned in Table III statistical method 
was implied for evaluation and optimal settings identification. 

1) DoE methodology for statistical optimisation: 

Calibrating factors in Table III enhances the accuracy and 

reliability of gesture recognition: 

                                                           
a Romeo et al. [73] has experimented different resolutions and abled to receive the best results for 3D 

calibration procedures. 
b The assertion regarding the impact of laptop models on gesture recognition software performance is 

supported by research that specifically addresses the interaction between hand gestures and laptops, 

TABLE III.  FACTORIAL DOE DESCRIPTION 

Factors Levels/SI Unit Description 

P
ri

m
a

ry
 

Camera 
Laptop camera 

External camera 

Cameras with different 

resolutionsa. 

Camera 

distance 
Centimetre (cm) 

Measurement in cm using a 

metal ruler (up to 30 cm) to 

determine the distance 

between the camera and the 

hand. 

Palm 

orientation 

Upper limb 

Landed wrist 

Stroke patients’ ability to 

move parts of their hands. 

S
e
c
o

n
d
a

ry
 

Lighting 

Controlled: 

Bright 

Dim 

Evaluating the camera's 

sensitivity to gesture 

recognition under different 

indoor lighting scenarios. 

Personal 

computer 

(PC) 

Laptop models 

 

A:  

HP Envy Laptop 13 

B:  

ASUS Vivobook 

A542U 

C:  

ACER Aspire E 14 

 

 

Laptop models vary in size 

and specifications, impacting 

gesture recognition software 

performanceb.  

 

Laptop size affects camera 

positioning and stability, 

potentially affecting gesture 

recognition accuracy.  

 

Hardware differences such as 

processor speed, RAM, and 

graphics impact efficiency 

and accuracy of gesture 

recognition algorithms. 

Corner 

angle of 

the laptop 

Degrees (𝜃):  

50°, 60°, 70° 

Measuring from a 3D printed 

protractor to determine the 

range of capture for the 

webcam in recognising 

landed wrist gestures. 

 Accuracy Percentage (%) 

Percentage of correctly 

recognised gesturesc(i.e. pinch 

extension). 

 Repetitions n = 3 

Conducting each gesture n = 

3 times to ensure consistency 

and reliability. 

The DoE approach optimises gesture recognition systems 
by adjusting elements and levels, aiming to determine optimal 
parameters for accurate recognition, particularly in stroke 
patients and different lighting conditions. 

The factors clearly provided some IoT devices used in the 
experiment in the description in Table III. In Section IV, the 
comprehensive analysis of IoT security and privacy will be 
discussed further to ensure that the best practices were 
identified in recent research [17]. 

emphasizing the importance of considering laptop specifications in the context of gesture recognition 

systems. 

c According to Hu et al. [74] the effectiveness of proposed method can be measured through accuracy to 

reduce training burden of the system. 
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IV. RESULTS AND DISCUSSIONS 

This part presents the outcomes of implementing MediaPipe 
for gesture recognition, the experimental setup, calibration 
process, and statistical analysis of DoE approach in optimising 
calibration parameters in enhancing hand gesture recognition 
for RIOT, and the argument on security measures with smart 
healthcare awareness. The visual representation of the results 
was also showcased in graphs and the process of data collection 
is displayed in Fig. 7. 

A. Descriptive Statistic and Overview 

The dataset comprises measurements of accuracy at 
different distances, camera types, and lighting conditions. Basic 
statistics are summarised in Table IV. 

TABLE IV.  DESCRIPTIVE STATISTIC 

Metric Value 

Sample Size  84 

Mean Accuracy (%) 
Varies by distance and lighting 

(refer Table V, Table VII, Table 

VIII, Table IX, Table X, and 
Table XII). 

Standard Deviation 

From TABLE IV. (from 10.00 cm to 30.00 cm) and each 
distance has multiple conditions for Bright and Dim lighting. 
For example, Bright and Dim conditions are repeated twice, so 
there are four measurements per distance. So, the sample size 
appeared to be 84 meanwhile the mean accuracy and standard 
deviation were explained in the next subtopic (refer to B. 
Experimental Setup and Calibration Results). 

B. Experimental Setup and Calibration Results 

In this section, the presentation of results of gesture 
recognition experiments, focusing on the accuracy, the 
relationships between factors were displayed and discussed. 
Sample of calculations of mean accuracy and standard 
deviation were shown as the following. 

a) Calculation of average accuracy: To calculate the 

average accuracy at a specific distance, the sum the accuracy 

percentages of multiple measurements at that distance and 

divide by the number of measurements (refer to Formula (3)). 

For example, at 10 cm: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠
 

=  
10.31

1
 = 10.31% 

b) Calculation of standard deviation: The standard 

deviation is calculated to understand the spread of accuracy 

measurements around the mean (average) accuracy (refer 

Formula 5). For example, at 10 cm with sample measurements 

(hypothetical values): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = [8,12,10,11,10] 

𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝜇) = 10.20 

Step-by-step calculation: 

First, each measurement’s deviation was calculated from 
the mean, square it: 

(8 − 10.20)2, (12 − 10.20)2, (10 − 10.20)2, 

 (11 − 10.20)2, (10 − 10.20)2 

=  4.84, 3.24, 0.04, 0.64, 0.04 

Next, the calculation of standard deviation (SD) was 
finalised: 

𝑆𝐷 = √
4.84, 3.24, 0.04, 0.64, 0.04

5
 

= √1.76 = 1.33 

Given the provided data in Table V, if the SD is given 
directly as 21.946, then it was directly used in the report: 

𝑆𝐷 = 21.946 

c) Distance and accuracy: To begin with, the 

determination of the impact of camera distance on gesture 

recognition, the accuracy was examined at various distance 

from 10.0cm to 30.0cm towards the palm placement. Moreover, 

the reliability and consistency of gesture recognition accuracy 

were analysed the standard deviation of accuracy 

measurements at different distances. The results are presented 

in Table V TABLE V. and Fig. 7. 

TABLE V.  ACCURACY AND STANDARD DEVIATION AT DIFFERENT 

DISTANCES 

Distance 

(cm) 

Average Accuracy 

(%) 
Standard Deviation 

10.00 10.13 21.946 

11.00 13.88 22.635 

12.00 29.25 32.766 

13.00 40.77 33.187 

14.00 54.29 41.415 

15.00 64.17 32.778 

16.00 74.27 29.884 

17.00 82.04 15.265 

18.00 85.27 14.596 

19.00 86.90 12.842 

20.00 88.08 12.266 

21.00 83.79 13.639 

22.00 85.00 12.360 

23.00 82.85 12.751 

24.00 83.04 13.152 

25.00 81.85 14.856 

26.00 81.52 16.114 

27.00 79.85 17.471 

28.00 76.27 19.254 

29.00 75.24 21.120 

30.00 72.04 23.297 

For distances of 10 to 15 cm, the standard deviation is high 
(21.946 to 41.415), indicating significant variability in 
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accuracy. This suggests that at these distances, the system’s 
performance is inconsistent. 

Next, the distances of 16 to 20 cm, the standard deviation 
decreases (12.266 to 29.884), suggesting more consistent 
performance. The accuracy is higher, and the lower standard 
deviation indicates that the system is more dependable at these 
distances. 

Finally, beyond 20 cm, the standard deviation remains 
moderate to high, indicating that the accuracy becomes more 
variable again as the distance increases. This suggests that the 
system’s performance is less stable at greater distances. 

Subsequently, a trend of accuracy was manifested across 
different distances and with variability based on the error bars 
in Fig. 7. 

 

Fig. 7. Line graph shows the trend of accuracy across different distances 

with error bars representing standard deviation. Error bars show higher 

variability at shorter distances, decreasing up to 20 cm. 

Therefore, from the line graph, the optimal distance is 20 
cm for the highest accuracy and stability. Meanwhile, the 
variability is high at 10-15 cm, low at 16-20 cm, and increases 
beyond 20 cm. Now, a histogram with 10% bin width visualises 
accuracy distribution across distances for clear view in Fig. 8. 
show that the accuracy values are most frequently distributed 
between 70% and 90%, with the highest frequency around 80-
90%. 

 

Fig. 8. Histogram depicts the frequency distribution of accuracy across 

different distances. 

d) Percentile analysis of accuracy: The 25th, 50th 

(median), and 75th percentiles were calculated to comprehend 

the distribution of accuracy. So, percentiles helped to 

summarise the central tendency and variability of the data from 

Table VI. 

TABLE VI.  PERCENTILE VALUES OF ACCURACY 

Percentile Value (%) 

25th Percentile 64.17 

50th Percentile 79.85 

75th Percentile 83.04 

The 25th percentile indicates that 25% of the accuracy 
values are below 64.17%. The median (50th percentile) is 
79.85%, showing that half of the accuracy values are below this 
value. The 75th percentile indicates that 75% of the accuracy 
values are below 83.04%. Next, a bell curve in Fig. 9 was 
generated based on the calculated mean and standard deviation. 
This visualisation helps in understanding the normal 
distribution of the accuracy data and provides insights into the 
performance and consistency of the gesture recognition system. 

 

Fig. 9. Bell curve peak indicates most scores are close to the mean, which is 

around 70% and illustrates the normal distribution of gesture recognition 

accuracy. 

The mean accuracy in Fig. 9 represents the central value of 
accuracy scores. The graph demonstrates a balanced variability 
in accuracy scores, with a moderate spread with the highest 
concentration around the mean and a balanced spread shown by 
standard deviation manifesting reliability and consistency, 
essential for its intended use. 

e) Camera and laptop model, lighting, and accuracy: 

The accuracy of gesture recognition was evaluated using 

different cameras under bright and dim conditions. The 

outcome was summarised in TABLE VII. TABLE VIII.  

TABLE VII.  ACCURACY BY CAMERA TYPE AND LIGHTING CONDITION 

Model Bright Dim 

External 70.83 69.29 

Laptop A 70.83 67.67 

Laptop B 63.74 62.42 

Laptop C 73.4 66.78 
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TABLE VIII.  STANDARD DEVIATION FOR ACCURACY LIGHTING 

CONDITIONS 

 Lighting 

Camera/ Model Bright Dim 

External 13.334 14.827 

Laptop A 8.059 12.515 

Laptop B 1.223 12.15 

Laptop C 7.879 15.309 

By the comparison from Fig. 10 indicates the accuracy 
evaluation within lighting condition and camera types. 

 

Fig. 10. Bar chart compares accuracies affected by different laptop models 

and an external camera. 

To sum up, Fig. 10 gesture recognition accuracy varies by 
camera type and lighting conditions. The best performance is 
from Laptop C under bright lighting achieves the highest 
accuracy (73.40%), while Laptop B under dim lighting has the 
lowest performance (62.42%). 

f) Palm orientation and accuracy: The accuracy of 

gesture recognition was also calculated for different palm 

orientations, as shown in Table IX. 

TABLE IX.  ACCURACY BY PALM ORIENTATION 

Palm Orientation Average (%) Standard Deviation 

Upper Limb 62.96 27.30 

Landed Wrist 7.900 11.548 

Table IX specifies that the accuracy for the upper limb 
orientation is significantly higher (62.96%) compared to the 
landed wrist orientation (27.30%). The standard deviation is 
also lower for the upper limb orientation, suggesting more 
consistent performance. The scatter plot, Fig. 11, reveals those 
error bars of standard deviation at various distances, 
highlighting accuracy variability. 

 

Fig. 11. The scatter plot visualises the relationship between distance (cm) and 

accuracy (%) for different palm orientations. The upper limb orientation 

consistently outperforms the landed wrist orientation. 

Accuracy sharply increases between 10 cm and 15 cm was 
revealed in Fig. 11 meanwhile accuracy peaks at 88% at 20 cm, 
then drops to 72% at 30 cm. High standard deviation at 10-15 
cm shows inconsistent performance, while from 16-20 cm it 
decreases, indicating more consistent accuracy. Standard 
deviation rises after 20 cm, showing less stable performance. 
Thus, the optimal distance for gesture recognition in this system 
was around 20 cm, where it achieved the highest accuracy and 
consistency, making it the most reliable range for practical 
applications in remote stroke rehabilitation. 

g) Corner angles and accuracy: The impact of the corner 

angles of the laptop on the accuracy of gesture recognition was 

investigated and summarised in Table X. 

TABLE X.  ACCURACY BY CORNER ANGLES 

Corner Angle (°) 
Average 

(%) 
Standard Deviation 

50 61.31 8.02 

60 69.95 3.66 

70 51.58 12.92 

Based on Fig. 12Fig. 12, a corner angle of 60° gives the 
highest accuracy (69.95%), while the lowest accuracy is 
observed at 70° (51.58%). 

 

Fig. 12. Accuracy and standard deviation at different corner angles (50°, 60°, 

70°). 
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Therefore, the accuracy and standard deviation of 60° angle 
as the optimal angle for highest accuracy is proven from the 
reading. 

h) Comparison of accuracy between factors: ANOVA 

Single-Factor 

An ANOVA single-factor analysis was conducted to 
compare the accuracy of gesture recognition across distinct 
factors. The results are presented in Table XI, Table XII and 
Table XIII. 

TABLE XI.  COMPARISON OF ACCURACY BETWEEN FACTORS 

Distance 

(cm) 
Lighting, Camera, and Palm Orientation Corner Angle 

10.00 10.13 26.11 

11.00 13.88 26.00 

12.00 29.25 40.94 

13.00 40.77 50.61 

14.00 54.29 49.00 

15.00 64.17 60.06 

16.00 74.27 77.33 

17.00 82.04 76.44 

18.00 85.27 74.50 

19.00 86.90 79.28 

20.00 88.08 77.28 

21.00 83.79 73.50 

22.00 85.00 72.83 

23.00 82.85 72.61 

24.00 83.04 69.17 

25.00 81.85 66.11 

26.00 81.52 64.89 

27.00 79.85 60.83 

28.00 76.27 57.50 

29.00 75.24 56.06 

30.00 72.04 48.56 

TABLE XI. Table XI had shown the accuracy of gesture 
recognition at various distances, considering lighting 
conditions, camera types, palm orientations, and corner angles. 
Two sets of factors are considered: one combining lighting 
conditions, camera types, and palm orientations, and the other 
focusing on corner angles. The accuracies of the factors were 
generally increased with distance up to 20.00 cm and then 
declined. It also established different performance trends based 
on corner angles. 

TABLE XII.  SUMMARY OF RESULTS 

Groups Count Sum Average Variance 

Lighting, 

Camera, and 

Palm Orientation 

21.000 1430.510 68.120 582.860 

Corner Angle 21.000 1279.614 60.934 255.719 

An overview of the total count, sum, average accuracy, and 
variance, in TABLE XII.  for the two groups of factors: 
"Lighting, Camera, and Palm Orientation" and "Corner Angle", 
were signifying that the average accuracy is higher for the 
combined group of lighting, camera, and palm orientation 
compared to the corner angle group. 

TABLE XIII.  ANOVA TABLE 

S
o

u
r
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 o
f 

V
a

r
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o
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(M
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) 

F
-V
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P
-v

a
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e 

F
 c

ri
ti

c
a
l 

Between 

Groups 
542.134 1.000 

542.13
4 

1.29
3 

0.26
2 

4.08
5 

Within  

Groups 

16771.58

6 
40.000 

419.29

0 
   

Total 
17313.72
0 

41.000     

F-Value: 1.29 (less than the F-Critical value of 4.08), 
indicating no significant difference. Similarly, P-Value: 0.26 
(greater than 0.05), failing to reject the null hypothesis. In short, 
the ANOVA test indicates that there is no statistically 
significant difference across settings. 

C. Hand Gesture Recognition Accuracy Calibration Outline 

1) Key findings by settings: Table XIV reveals the concise 

version of the experimental products after the observation and 

analysis. 

TABLE XIV.  SUMMARY OF ANALYSIS 

Setting Key Finding 

Distances 

and 

Accuracy 

 Optimal distance: 20 cm (accuracy: 88.08%).  

 High variability at 10-15 cm, low at 16-20 cm, 

increases beyond 20 cm. 

Camera 

and 

Lighting 

 Best performance: 

 Laptop C under bright lighting (accuracy: 

73.40%).  

 Lowest performance: 

 Laptop B under dim lighting (accuracy: 

62.42%). 

Palm 

Orientation 

 Higher accuracy with upper limb orientation 

(62.96%). 

Corner 

Angle 
 Optimal angle: 60° (accuracy: 69.95%). 

ANOVA 

Analysis 

 No significant differences across settings  

(F-Value: 1.29, P-Value: 0.26). 

A concise summary of the key findings from the analysis 
was provided Table XIV to highlight the optimal settings for 
distance, camera, lighting, palm orientation, and corner angle 
for achieving the highest gesture recognition accuracy. The 
ANOVA analysis confirms that there are no significant 
differences across the settings tested. 

2) Comparative analysis and unique contributions of 

current research in hand gesture recognition: The comparison 
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of the obtained results on hand gesture recognition to other 

studies in the field, it is evident that this experiment on 

calibration outcomes provide valuable insights that surpass the 

relevance and accuracy of many existing works. While various 

studies have explored different aspects using technologies such 

as deep learning algorithms, data gloves, and EMG sensors, this 

calibration findings stand out for its specific focus on key 

factors that significantly impact accuracy and performance in 

hand gesture recognition systems. 

Luo et al. [75] and Yılmaz [76] had previously investigated 
the use of CNNs and deep learning algorithms for gesture 
recognition, which are common approaches in the field. 
However, by pinpointing the optimal distance for accuracy at 
20 cm and highlighting the impact of camera and lighting 
conditions on performance, has already surpassed their 
products. This specificity in identifying the ideal conditions for 
accurate gesture recognition sets this current research apart 
from these more general approaches such as altering genetic 
algorithms for the recognition under the same lighting alone. 

Similarly, Gao et al. [77] had emphasised the reliability of 
data-glove-based methods for gesture recognition, which can 
indeed yield high accuracies. In addition, exploration on the 
binary serial image implied image extraction calculation with 
depth-sensor-based gesture recognition, showcasing the 
diversity of approaches in the field. does not seem practical 
when it comes to investigating the skin colour [78]. 
Nonetheless, this calibration study abled to provide more 
practical insights by focusing on the impact of palm orientation 
and corner angle on accuracy, offering tangible guidance for 
improving recognition rates beyond just the choice of 
recognition method, especially while considering the ability of 
stroke patients, to enable a layer of real-world applicability. 

Moreover, while studies as per Farid et al. [79] discuss the 
application of vision-based systems for gesture recognition. 
Conversely, by conducting a detailed analysis of how different 
factors such as distance, lighting, and hand orientation affect 
accuracy the optimal settings for these variables, these 
calibration findings proposed a more comprehensive 
understanding of the nuances involved in achieving high 
accuracy rates in gesture recognition systems. 

Furthermore, ANOVA analysis conducted has revealed no 
significant differences across settings, contrasts with the 
emphasis on specific methodologies and algorithms [80], [81]. 
While these studies contribute valuable insights into the 
technical aspects of gesture recognition. According to DoE 
factors that were implemented in this research, it was certain 
that focusing on the has been impactful compared to the 
environmental settings of the existing literature. 

The outcomes of the experiment were recorded by 
observing the accuracy as shown in Fig. 13. The provided 
images in Fig. 13 demonstrate the performance of a gesture 
recognition system under various conditions. Fig. 13(A) shows 
a fist gesture in upper limb orientation with landmarks, 
achieving 22% accuracy for pinch extension at a close distance 
to the camera, indicating clear recognition. Fig. 13(B) depicts a 
fist gesture slightly further from the camera, resulting in 8% 
accuracy, highlighting the impact of increased distance on the 

system’s performance. Fig. 13(C) illustrates a pinch gesture 
with 71% accuracy, measured by the distance between specific 
landmarks in a bright setting, underscoring the importance of 
good lighting for accurate recognition. Fig. 13(D) shows a fist 
gesture at 30 cm distance in landed orientation under dim 
lighting, with 7% accuracy, demonstrating the challenges of 
maintaining high accuracy at greater distances and under poor 
lighting. Fig. 13(E) presents a fist gesture at a closer distance in 
landed orientation under dim lighting, achieving 0% accuracy 
for pinch gesture recognition, highlighting the system’s 
limitations in dim lighting conditions. Fig. 13(F) demonstrates 
perfect accuracy for the pinch extension gesture in upper limb 
orientation under dim lighting, indicating that the system can 
achieve high accuracy with proper calibration even under 
suboptimal lighting. These observations suggest that gesture 
recognition accuracy is influenced by distance, lighting 
conditions, and the specific gesture being performed. 

D. MediaPipe Framework Implementation 

MediaPipe provides a robust solution for real-time, on-
device machine learning, particularly hand gestures, facial 
landmarks, and pose detection. One of its primary benefits is 
that it does not require extensive training, unlike many 
traditional machine learning models. MediaPipe’s pre-trained 
models facilitate immediate recognition capabilities, making it 
an efficient and practical choice for works that demand quick 
and accurate results without the need for a deep understanding 
of machine learning algorithms or the resources required for 
training datasets. 

E. Overcoming Data Security and Reliability Downsides with 

Smart Healthcare 

Ensuring data security and reliability is paramount due to 
the sensitive nature of patient information being transmitted 
across networks. Several strategic approaches can be employed 
to overcome these challenges effectively. The implementation 
of IoT in this study, which was included in the factorial DoE, 
aligns with the trends and challenges identified in by Zainuddin 
et al., [24] by demonstrating the practical applications and 
potential hurdles of integrating advanced technologies in 
healthcare. 

Firstly, implementing robust encryption protocols, such as 
end-to-end encryption, ensures secure data transmission and 
storage [82]. Encryption plays a crucial role in protecting 
patient data from unauthorised access during transfer between 
devices and servers. Incorporating blockchain technology, data 
integrity and security were enriched through providing a 
decentralised and immutable ledger for recording transactions 
[83]. Once patient data is stored in the blockchain, it becomes 
tamper-proof, ensuring its accuracy and reliability. 

Moreover, an advanced machine learning algorithms can 
significantly improve the reliability of smart healthcare systems 
by enabling accurate data analysis and predictions [84]. These 
algorithms can detect anomalies in data transmission, flag 
security threats in real-time, and predict system failures to 
enhance reliability. 

Furthermore, utilising multi-factor authentication (MFA) 
adds an extra layer of security by requiring multiple forms of 
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identification for system access [85]. This approach reduces the 
risk of unauthorised access, even if one factor is compromised. 

In addition, regular security audits and vulnerability 
assessments are essential for identifying and addressing 
potential security weaknesses in smart healthcare systems [86]. 
By evaluating the system's security posture routinely, necessary 
updates and patches can be implemented to safeguard against 
emerging threats. 

In short, by employing encryption, blockchain technology, 
machine learning algorithms, multi-factor authentication, and 
security assessments smart healthcare systems can effectively 
manage data security and reliability, ensuring the secure and 
reliable transmission of patient information. 

F. The Impact of Secure Calibration with DoE 

Calibration methods improve recognition accuracy and 
system reliability. Technology integration is important for 
securing the calibration process and optimising performance. 

Tanwar et al. [87] conducted a study on secure calibration 
methods and technology integration in gesture recognition. The 
research emphasised the importance of preserving privacy in 
sign language recognition using deep learning for encrypted 
gestures. Hence, the encryption techniques are crucial for 
ensuring the security, integrity, and reliability of gesture 
recognition systems. 

 

Fig. 13. Screenshots of hand gesture recognition accuracy for calibration. 

Fig.13. A. Fist gesture in upper limb orientation with landmarks manifested 22% accuracy for pinch extension in a close distance between camera and palm where the gesture was fully and clearly recognised in the 

window. In this scenario, the gesture was fully and clearly recognized in the window, highlighting the system's potential for precise recognition at short distances. 

Fig. 13. B. A demonstration of the fist gesture slightly further from the camera yielded an accuracy of 8%. This reduction in accuracy emphasises the impact of distance on the system's performance, with closer 

distances generally providing better recognition. 

Fig. 13. C. The accuracy of the pinch gesture (71%) was calculated by measuring the distance between landmark 4 and landmark 8 in a bright setting. This high accuracy underscores the importance of bright lighting 

conditions for optimal gesture recognition. 

Fig. 13. D. At 30.00 cm, the system recorded an accuracy of 7% for recognising a fist gesture in landed orientation under dim lighting conditions. This result illustrates the challenges of maintaining high accuracy at 

greater distances and under poor lighting. 

Fig. 13. E. A closer distance of the fist gesture in landed orientation under dim lighting conditions resulted in an accuracy of 0% for pinch gesture recognition. This scenario highlights the limitat ions of the system in 

dim lighting, even at closer distances. 

Fig. 13. F. Perfect accuracy was measured for the pinch extension gesture in upper limb orientation under dim lighting conditions. This indicates that the system can achieve high accuracy in certain gestures and 

orientations, even under suboptimal lighting, demonstrating the potential for robust performance with appropriate calibration.

Overall, the investigation on hand gesture recognition 
stands out for its meticulous examination of the impact of 
distance, lighting, palm orientation, and corner angle on 
accuracy. By providing specific recommendations for optimal 
conditions and highlighting the practical implications of these 
discoveries offer a valuable contribution to the field of gesture 
recognition that surpasses many existing studies in terms of 
relevance and applicability. 

V. CONCLUSION 

In conclusion, this research has demonstrated the potential 
of integrating the MediaPipe framework with the Rehabilitation 
Internet-of-Things (RIOT) to enhance the accuracy and security 
of hand gesture recognition in smart healthcare systems by 
applying strong methodologies, the DoE for calibration and this 
study has also addressed the critical challenges of data security, 
reliability, and accurate assessment in stroke rehabilitation. The 
results denote that optimising factors such as camera distance, 
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lighting conditions, and palm orientation could significantly 
improve gesture recognition accuracy. Furthermore, the 
implementation of advanced encryption protocols and 
blockchain technology ensures the secure transmission and 
storage of sensitive patient data. These advancements are not 
only facilitating more effective and precise remote 
rehabilitation but also underscore the importance of 
multidisciplinary collaboration in developing smart healthcare 
solutions. Ultimately, this research paves the way for future 
innovations in healthcare technology, promoting better patient 
outcomes and more efficient rehabilitation processes. In 
growing body of research on the combination of IoT and AI in 
healthcare, building on the foundational work [15], [16]. Future 
research should continue to explore the intersection of these 
technologies to further enhance their efficacy and security. 
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